MONOCITOS Y CÉLULAS DENDRITICAS: implicación en el control tumoral y neoplasias de células dendríticas

CANCER RESEARCH CENTER IBSAL, UNIVERSITY & UNIVERSITY HOSPITAL OF SALAMANCA

6° Curso Práctico de Citometría de Flujo Valencia, 28 de septiembre de 2023

HEMATOPOIESIS

Immunophenotypic features of human BM CD34+ HPCs vs CD34+ endothelial cells & MSCs

- Mesenchymal Stem Cells; 📕 - CD34+ Endothelial cells; 📕 - CD34+ Hematopoietic Precursors;

Orfao et al, J Immunol Meth 2019

IMMUNOPHENOTYPE OF CD34+ MYELOID-COMMITTED HPC

CELL LINEAGE	SSC	IMMUNOPHENOTYPE
Erythroid	stable	CD36+, CD105+, CD64-
Megakaryocytic	high	CD61+
Neutrophil	high	CyMPO+,
Eosinophil	high	CyEPO+,
Basophil	low	CD123 ^{hi} , CD203c+, CD117 ^{lo}
Monocytic	stable	CD64+
Mast cell	low	CD117 ^{hi} ,
pDC	stable	CD36+, CD123 ^{hi} , HLADR ^{hi}
		EuroFlow

HEMATOPOIETIC PRECURSOR CELLS

CELL LINEAGE	PHENOTYPE	FREQUENCY (% of CD34+ and/or CD117+ precursors) Median [min-max]
Myeloid precursors	CD38 ⁺ CD45 ^{Io} CD117 ⁺ HLA-DR ^{het}	77% [57-85%]
Erythroid	CD36 ⁺ CD35 ^{-/+} CD45 ^{lo} CD105 ⁺ CD71 ⁺	35% [24-37%]
Neutrophil	cyMPO ⁺ CD64 ⁻ CD13 ⁺	33% [26-38%]
Monocyte	CD64 ⁺ cyMPO ^{-/+het} CD117 ^{het} HLA-DR ^{hi}	22% [16-28%]
pDC	CD123 ^{+/hi} HLA-DR ^{hi} CD45 ^{lo} CD36 ⁺	6% [1-9%]
Basophil	CD123 ^{+/hi} CD45 ⁺ CD117 ^{Io} HLA-DR ^{Io} CD203c ⁺	<1% [0-3%]
Eosinophil	cyMPO ⁻ CD15/CD65 ⁺ cyEPO ⁺	<1%
Mast cell	CD117 ^{hi} HLA-DR ^{lo} CD45 ^{int}	<1%
Megakaryocyte	CD61 ⁺ CD45 ^{Io} CD203c ^{Io}	<1%
B-cell	nuTdT+ cyCD79a+ CD19+	23% [<1-45%]
T/NK/DC	cyMPO ⁻ CD7 ^{het}	12% [10-15%]

pDC VS. ERYTHROID

pDC

CD36

CD123

HPC

HLA-DR

CD117

Modified from: Matarraz et al Leukemia 2008 and Orfao et al, JIM (2019)

MPO, myeloperoxidase; EPO, eosinophil peroxidase; TdT, terminal deoxynucleotidyl transferase

ERYTHROID VS. MONOCYTIC

Monoblasts CD34+/CD117+ Monoblasts CD34-/CD117+ Promonocytes CD14-Promonocytes CD14+ Mature Mo

Adapted and extended from: Matarraz et al, Cytometry Part B (2015)

 $HLADR \rightarrow CD64 \rightarrow CD36 \rightarrow CD35 \rightarrow CD14 \rightarrow IREM2$ (CD300e)

N-DIMENSIONAL MONOCYTIC MATURATION IN NORMAL BM

Sequential markers: CD64+ CD34- CD117- CD14+ CD35+ CD300e+

Orfao et al, J Immunol Meth 2019

EuroFlow

NORMAL (PLASMACYTOID) DENDRITIC CELL MATURATION IN BM

IMMUNOPHENOTYPE OF CD34+ MYELOID-COMMITTED HPC

CELL LI	NEAGE	SSC
---------	--------------	-----

IMMUNOPHENOTYPE

Erythroid	stable	CD36+, CD105+, CD64-
Megakaryocytic	high	CD61+
Neutrophil	high	CyMPO+,
Eosinophil	high	CyEPO+,
Basophil	low	CD123 ^{hi} , CD203c+, CD117 ^{lo}
Monocytic	stable	CD64+
Mast cell	low	CD117 ^{hi} ,
pDC	stable	CD36+, CD123 ^{hi} , HLADR ^{hi}

PLASMACYTOID DENDRITIC CELL MATURATION IN BONE MARROW

CD34+ CD38+ HPC CD34⁺⁺/HLA-DR^{++/++}/CD123⁺⁺/CD45^{+/++} (Stage I) CD34⁺/HLA-DR^{+/++}/CD123^{++/+++}/CD45^{+/++} (Stage II) CD34⁻/HLA-DR⁺⁺/CD123^{++/+++}/CD45⁺⁺ (Stage III)

Adapted from: Martín-Martín et al, Transfusion (2010)

AXL+ DENDRITIC CELLS IN THE CLASSICAL pDC GATE (BLOOD)

In: Villani et al, Science 2017; van der Pan et al, Front Immunol 2023

NORMAL (MYELOID) DENDRITIC CELL MATURATION IN BM

MONOCYTE AND DENDRITIC CELL POPULATIONS IN BONE MARROW

[Bone marrow mononuclear cells]

Responsible scientists: Cristina Teodosio, Kirsten Canté, Frank Staal

pDC, plasmacytoid dendritic cells; myDC, myeloid dendritic cells; cMo, classical monocytes; iMo, intermediate monocytes; ncMo, non-classical monocytes

BONE MARROW MYELOPOIESIS

MONOCYTE AND DENDRITIC CELL POPULATIONS CIRCULATING IN PB

MONOCYTE POPULATIONS IN PERIPHERAL BLOOD

Heterogeneous populations

MONOCYTE POPULATIONS IN PERIPHERAL BLOOD

- 77 proteins evaluated in healthy donors:

van der Pan et al, Front Immunol 2022

DENDRITIC CELL POPULATIONS IN BLOOD

Villani et al, Science (2017); Collin et al. Immunology (2018); Yin et al. J Immunol (2017)

MONOCYTE POPULATIONS IN PERIPHERAL BLOOD

✓ Monocytic (sub)pobulations exhibit unique functional profiles

Monocyte and Dendritic cell populations: HISTORICAL PERSPECTIVE

MYELOID CELL POPULATIONS IN BONE MARROW

Immunophenotypic profile of monocytes and dendritic cells in blood

POI	PULATION	CD141	CD5	CD192	CD62L	HLA- DR	CD16	CD1c	CD36	FcERI	SLAN	CD34	CD33	CD300e	CD303	CD45	CD14
Eosinophils#		-	-	-	+	-	-	-	-*	- (-/+)	-	-	dim	-	-	+	-
	Mature	-/+	-	-/+	++	-	++	-	_*	-	-	-	dim	-	-	+	-
Neutrophils [#]	Immature CD62L-	-	-	-	-	-	-	-	-*	-	-	-	+	-	-	+	-
	Immature CD62L+	-	-	-	+	-	dim	-	_*	-	-	-	+	-	-	+	-
Basophils		-	-	+	++	-	-	-	-	++	-	-	+	-	-	dim	-
	CD62L+/FcERI-	dim	-	+	+	+	-	dim	+	-	-	-	++	dim	-	+	+
cMo	CD62L+/FcERI+	dim	-	+	+	+	-	dim	+	+	-	-	++	dim	-	+	+
CIVIO	CD62L-/FcERI-	dim	-	+	-	++	-	dim	+	-	-	-	++	+	-	+	+
	CD62L-/FcERI+	dim	-	+	-	++	-	dim	+	+	-	-	++	+	-	+	+
iMo		+	-	+	-/dim	++	+	dim	+	-	-	-	++	+	-	+	+
	CD36+/Slan-	+	-	-/+	-	+	+	dim	+	-	-	-	++	++	-	++	dim
2010	CD36-/Slan-	+	-	-	-	+	+	dim	-	-	+	-	++	++	-	++	-
TICIVIO	CD36+/Slan+	+	-	-	-	+	+	dim	+	-	-	-	+	++	-	++	-
	CD36-/Slan+	+	-	-	-	+	+	dim	-	-	+	-	+	++	-	++	-
pDC		+	-	+	-/+	++	-	-	+	dim/+	-	-	-	-	+	+	-
Axl DC		+	-/+	+	dim/+	++	-	-	dim	-/+	-	-	+	-	+	+	-
	CD14dim	dim	-	+	-/+	++	-	dim	+	+	-	-	++	-/+	-	+	dim
myDC CD1c+	CD14-/CD5-	dim	-	+	-/+	++	-	+	+	+	-	-	++	-/+	-	+	-
	CD14-/CD5+	+	+	+	-/+	++	-	+	+	+	-	-	++	-/+	-	+	-
myDC CD141+		++	dim	+	+	++	-	-	_*	-	-	-	++	-	-	+	-
M-MDSC		-	-	-/dim	+	-/dim	-/+	dim	-/dim	-	-	-	+	-/dim	-	+	dim/+
НРС		-	-	-	-/+	+	-	-	_*	-/dim	-	+	-/+	-	-	dim	-
Pre-DC		-	-	dim	+	++	-	-	-*	-	-	dim	-/+	-	-	dim	-

*Some unspecific staining may be observed due to platelets bound to leukocytes # AutoFL for some detectors, specially those corresponding to the violet and blue lasers.

Slide prepared by Cristina Teodósio

TISSUE MACROPHAGES, DENDRITIC CELL AND MAST CELL POPULATIONS

TISSUE MACROPHAGES AND DENDRITIC CELLSS

Figure by B.M.F. Winkel, dep. Parasitology, LUMC

MONITORING MONOCYTE -MACROPHAGE, DENDRITIC CELL AND MAST CELL POPULATIONS

Monitoring Innate Myeloid Cells (IMC)

INNATE MYELOID CELLS

✓ Express receptors to monitor and **sense microenvironmental changes**

✓ Responsible for intra-tissue scanning and elimination of debris and apoptotic cells

✓ Key players in the **initiation of immune responses**

✓ **Production and recruitment** reflect **disturbance** of body **homeostasis**

MONITORING HOMEOSTASIS IMBALANCE IN PATIENT CARE

ROLE OF MONITORING INNATE MYELOID CELLS (IMC)

IMMUNE RESPONSE IN INFECTION: PRIMARY RESPONSE TO VIRUS

✓ COVID-19 vs. Crimean-Congo Haemorrhagic Fever (CCHF)

-2 0 2

Deviation from normal (z-score vs. healthy donors)

ROLE OF MONITORING INNATE MYELOID CELLS (IMC)

BLOOD MONOCYTE AND DENDRITIC CELL LEVELS IN PRIMARY IMMUNODEFICIENCY

Innate Cell Population

LOCID: Late Onset Cpmbined Immune Deficiency CVID: Common Variable Immune Deficiency

pDC, plasmacytoid dendritic cells; myDC, myeloid dendritic cells; HPC, hematopoietic precursor cell; cMo, classical monocytes;

iMo, intermediate monocytes; ncMo, non-classical monocytes

ROLE OF MONITORING INNATE MYEOLOID CELLS (IMC)

MONITORING IMC IN HEMATO-ONCOLOGY: MULTIPLE MYELOMA

cMo subsets

ncMo subsets

cMo, classical monocytes; ncMo, non-classical monocytes; HD, healthy donor; MGUS, Monoclonal gammopathy of undetermined significance; SMM, Smoldering multiple myeloma; MM, multiple myeloma; p<0.05 vs * HD, ^ MGUS, # SMM

EHA

In: Damasceno et al, Cancers (Basel) (2021)

MONITORING INNATE MYELOID CELLS IN SYSTEMIC MASTOCYTOSIS

pDC, plasmacytoid dendritic cells; *myDC*, myeloid dendritic cells; *HD*, healthy donor; *BMM*, bone marrow mastocytosis; *ISM*, indolent systemic mastocytosis; *ASM*, aggressive systemic mastocytosis

Modified from: Pérez-Pons et al, Clin Transl Allergy (2022)

ROLE OF MONITORING INNATE MYELOID CELLS (IMC)

MONITORING RESPONSE TO TISSUE DAMAGE

Leucocyte kinetics in PB after Total Hip Replacement (THR)

EHA

pDC, plasmacytoid dendritic cells; myDC, myeloid dendritic cells; HPC, hematopoietic precursor cell; cMo, classical monocytes; iMo, intermediate monocytes; ncMo, non-classical monocytes

NEOPLASTIC MONOCYTIC, DENDRITIC CELL AND MAST CELL POPULATIONS

NEOPLASTIC COUNTERPART OF TISSUE DENDRITIC CELLS

Langerhans HISTIOCYTOSIS

- Clonal expansión of Langerhans cells
- Cell lesions expressingan LC-associated markers (CD1a, CD207)
- Heterogeneous clinical presentation (unifocal, multifocal bone, multisystemic)

CD207

Multi-system

Unifocal lesion

CD1a

Monocytic alterations in MDS

Abnormal cell distribution	Frequency	
Maturation blockades	56%	
Abnormal antigen expression patterns		Statler Stavenson, Blood 2001
Abnormal granularity (SSC)	30%	
Abnormal CD45	23%	Ogata, Blood 2002
Abnormal distribution of immature/mature cells	47%	Wells, Blood 2003
Abnormal CD33	3%	Malcovati, Leukemia 2005
Abnormal HLA-DR	10%	Benesch, Hematology 2007
Abnormal CD11b/HLA-DR pattern	10%-29%	Matarraz, Leukemia 2008
Asynchronous antigen expression		Stachursky, Leuk Res 2008
Expression of CD34	12%	Van de Loosdrecht, Blood 2008
Abnormal CD14	20%	Subirá Transl Res 2008
Abnormal CD13	39%	SUDITA, ITALISI KES 2008
Abnormal CD36	31%	Kern, Cancer 2010
Abnormal CD64	23%	Matarraz, Cytometry 2010
Abnormal CD15	33%	Kern, Leuk Lymph 2011
Expression of lineage infidelity markers	5	Westers, Leukemia 2012
Lineage infidelity CD2	9%	Matarraz Cytometry B 2015
Lineage infidelity CD5	2%	Malanaz, Cylometry B 2015
Lineage infidelity CD7	3%	Harrington, Am J Clin Pathol 2016
Lineage infidelity CD19	2%	
Overexpression of CD56	15%	

Monocytic differentiation in normal BM

	Cell lineage	Phenotype	Frequency Normal BM (%)	Gated CD34+ BM cells
	Neutrophil	CyMPO ⁺ , CD13 ^{hi}	31 (12-39)	₽ ₁ Monocytic lineage
	B-Lymphoid	nTdT⁺, cyCD79a⁺, CD19⁺	23 (<1-45)	
	Erythroid	CD36 ⁺ , CD64 ⁻ , CD45 ^{dim} , CD105 ⁺	15 (5-35)	
	pDC	CD123 ^{hi} , HLA-DR ^{hi} , CD36 ⁺	6 (1-15)	₽ Erythroid lin.
	Monocytic	CyMPO ⁻ , CD64 ⁺ , HLA-DR ⁺ , CD117 ^{dim}	5 (3-15)	
т Е4	Basophil	CD123 ^{hi} , HLA-DR ^{dim} , CD117 ^{dim} , CD45 ^{hi} , CD203c ⁺	<1 (<1-3)	
	Megakaryocytic	CD61 ⁺ , CD45 ^{dim}	<1	
	Eosinophil	CyMPO ⁻ , CD15/65 ⁺ , CyPEo ⁺	<1	
	Mast cell	CD117 ^{hi} , HLA-DR ^{dim} , CD45 ^{hi}	<1	

CD64: high-affinity IgG receptor FcγRI (van der Poel *et al, J. Immunol 2011*)

Matarraz et al, Leukemia 2008

CD34⁺ cells in MDS

✓ Distribution (total %)

Major Lineage commitment

(relative %, CV)

Monocytic L. in MDS

CD56 and CD2

- ✓ Matutation blockades (relative %)
- ✓ Lineage infidelity

CD56 and CD2 expression is more frequent in CMML vs. MDS

(47% and 56% vs. 18% and 16%, respectively)

Subirá D, Trans Res 2008 Matarraz, Cytometry B 2017

Altered monocytic patterns in CMML vs AMML

Cell distribution and phenotype	CMML	Monoblastic leukemia	Monocytic leukemia
↓ CyMPO	40%	90%	70%
↓ %CD36+ cells	20%	90%	0%
\downarrow %CD11b+ cells	70%	100%	28%
\downarrow %CD15+ cells	-	70%	0%
\downarrow %CD35+ cells	10%	90 %	0%
\downarrow %CD14+ cells	30%	100%	0%
↓ %CD300e+ cells	10%	100%	10%

Monocytic maturation

Matarraz S, Cytometry B 2015

Monocytic lineage infidelity in CMML vs AMML

Aberrant phenotype	CMML	Monoblastic leukemia	Monocytic leukemia
CD34+	0%	45%	43%
CD16	50%	0%	60%
CD19 (partial)	0%	55%	43%
CD7 (partial)	20%	45%	15%
NuTdT	0%	0%	20%
CD56*	70%	70%	80%
NG2 (7.1)	0%	70%	60%

Matarraz S, Cytometry B 2015

Unique immunophenotypic features of CD34+ HPC in AMLNPM1

Table 3. Univariate and multivariate logistic regression analysis of immunophenotypic patterns associated with NPM1 mutation among leukemic cell subsets from AML patients

	Univariate analysis						variate Ivsis	
		955	% CI			955	% CI	
Variables and leukemic cell subsets	OR	Lower	Upper	p-value	OR	Lower	Upper	p-value
CD34+ and/or CD117+HLADR+ leukemia cells								
<26.5% of all leukemia cells	2.085	1.088	4.000	0.02				
CD34+ (<35%)	22.957	11.075	47.585	<0.001	15.220	6.841	33861	<0.001
CD33 (>96%)	6.528	3.368	12.652	<0.001	3.035	1.264	7.288	0.01
CD105 (<9.5%)	2.647	1.405	4.987	0.003				
HLA-DR (<97%)	2.427	1.353	4.543	0.003	2.592	1.122	5.988	0.02
CD15 (>6.6%)	3.460	1.692	7.076	0.001				
CD7 (>3%)	6.439	3.389	12.234	<0.001	4.712	2.024	10.973	<0.001
CD56 negative	3.579	1.396	9.173	0.008				
NuTdT negative	4.775	1.893	12.049	<0.001				
Leukemic cells with neutrophil differentiation								
>21.5% of all leukemia cells	3.494	1.142	10.694	0.02	-	-	-	-
CD34 (<5%)	10.933	5.031	23.761	<0.001	12.903	4.597	36.216	<0.001
CD71 (<70%)	4.653	2.240	9.665	<0.001	4.269	1.534	11.881	0.005
CD105 (>3%)	7.468	3.424	16.287	<0.001	6.232	2.240	17.340	<0.001
CD64 (<30%)	9.167	4.332	19.441	<0.001	6.339	2.366	16.981	<0.001
CD13 (<92%)	7.003	3.338	14.668	<0.001	-	-	-	-
CD56 (>5%)	4.889	1.766	13.531	0.002	-	-	-	-
Leukemic cells with monocytic differentiation								
Asynchronous CD300e and/or CD35	56.320	28.891	109.790	<0.001	616.785	62.241	6112.08	<0.001
Asynchronous CD300e	123.2	43.5	348.7	<0.001				
Asynchronous CD35	31.7	16.6	60.2	<0.001				
CD34+ (<3.8%)	116.250	15.199	889.122	<0.001	519.029	27.601	9760.2	<0.001
CD117 (<5.9%)	3.505	1.705	6.847	0.001	-	-	-	-
CD13 (<77%)	14.525	6.414	32.892	<0.001	-	-	-	-
CD123 (>82.8%)	2.935	1.516	5.681	0.001	9.208	1.013	83.70	0.05
CD15+ (>77%)	7.788	3.640	16.663	<0.001	-	-	-	-
CD36 (>87%)	4.062	2.067	7.983	<0.001	-	-	-	-
OR odds ratio: CL confidence interval					•			

Matarraz et al, Blood Cancer J, 2023

Unique immunophenotypic features of blood monocytes in CMML

Selimoglu-Buet et al , Blood 125: 36118-26, 2015

Unique immunophenotypic features of CD34+ HPC in JMML

Bugarin et al, Haematologica 2023

Plasmacytoid dendritic cell neoplasm

Martin Martin et al, Oncotarget 2015

Myeloid neoplasm (MDS) with NPM1 mutation

Maturing neutrophils and monocytes

CONCLUDING REMARKS:

- Optimized multi-color antibody combinations have been proposed which facilitate assessment of the normal monocytic and dendritic cell compartments in human BM, PB and other tissues.

- Important advances have been made in the identification and understanding of the normal monocytic, DC and MC maturation pathways in different tissue compartments.

- All the above has highlighted the existence of multiple distinct subpopulations of monocytes and dendritic cells in human blood which can be simultaneously assessed.

- Such increased knowledge about the normal B-cell and T-cell maturation pathways provides the basis for monitoring specific alterations of these cell populations in multiple disease conditions aberrant protein expression profiles in their neoplastic counterparts.

Acknowledgements & Collaborations in Immune Monitoring

VNiVERSiDAD DSALAMANCA CANCER RESEARCH CENTER

Julia Almeida Martin Perez-Andres Elena Blanco Juan Flores-Montero Luzalba Sanoja-Flores Daniela Damasceno Juan Flores Vitor Botafogo **Ouentin Lecrevisse** Lourdes Martín Sara Gutiérrez María Herrero Alejandro Hernandez Sergio Matarraz Maria Luz Sanchez Paloma Barcena Sheila Mateos Alberto Orfao

Complejo Asistencial Universitario de Salamanca

Hematology Service

Ana Yeguas Marta García Blázquez Lucía López Corral Ana África Martín María Dolores Caballero Alejandro Martín Verónica González Estefanía Pérez Maria Belen Vidriales Miriam López Maria Victoria Mateos Norma Gutiérrez Marcos González

Department of Immunology

Cristina Teodosio Magda Berkowska Pieter van der Pol Indu Khatri Wouter van den Bossche Kyra van der Pan **Annieck Diks** Gita Naber Alita van der Sluijs Sandra de Bruin Sandra Vloemans **Rick Groenland** Bas de Mooij Marieke Bitter **Bart Lubbers** Châtelaine Voets

WP5 Task 5.6

USAL, Salamanca, ES LUMC, Leiden, NL RIVM, Bilthoven, NL RUMC, Nijmegen, NL UTU, Turku, FI UOXF, Oxford, UK US, Southampton, UK MRC, Gambia, GM ULB, Brussels, BE

WP5

Concetta Quintarelli Franco Locatelli Sara Gorashian Ignacio Criado Silvia Zaninelli Alessandro Rambaldi

Chiara Magnani Chiara Buracchi **Giuseppe Gaipa** Andrea Biondi

European Research Council

MUCHAS GRACIAS